0=-16t^2+186

Simple and best practice solution for 0=-16t^2+186 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+186 equation:



0=-16t^2+186
We move all terms to the left:
0-(-16t^2+186)=0
We add all the numbers together, and all the variables
-(-16t^2+186)=0
We get rid of parentheses
16t^2-186=0
a = 16; b = 0; c = -186;
Δ = b2-4ac
Δ = 02-4·16·(-186)
Δ = 11904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11904}=\sqrt{64*186}=\sqrt{64}*\sqrt{186}=8\sqrt{186}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{186}}{2*16}=\frac{0-8\sqrt{186}}{32} =-\frac{8\sqrt{186}}{32} =-\frac{\sqrt{186}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{186}}{2*16}=\frac{0+8\sqrt{186}}{32} =\frac{8\sqrt{186}}{32} =\frac{\sqrt{186}}{4} $

See similar equations:

| 13=6+7v | | X+(x+1)=-55 | | 20a+4=5a+35 | | x+x-52=130 | | 0.666667y=12 | | 7x-14=x+4 | | 4(2x-5)-3(x+10=-15 | | 0=16t^2+186 | | 42-x=35 | | -7(x+2)+4x=6(2x-4) | | 111-(6x-3)^2=x | | 6-8p=3 | | -9.87+10.3d=14.8d-4d-0.17 | | 7x-10x+12+2x=-5 | | 1/t+1/3t+1/5t=9 | | 7a-9=-65 | | 3(4x-2)=x+5 | | n=1.8n+32 | | x+(6x-3)^2=111 | | -9u=-10u+10 | | (-9/4)v+(4/5)=(7/8) | | (-25/35)*x=1 | | v/7=-11 | | 2x+x-4=16 | | (7n+9)(4n-3)=0 | | 19+7y=-19-10+4y | | -25/35*x=1 | | 6-x-x=-4 | | -5(10m+12)=8(m+7) | | 5x(x+6)=10 | | -11z=z+12 | | 7y-21=2y+24 |

Equations solver categories